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SUMMARY

We show how a well-known multiple step-down 51gmﬁcance testing procedure for comparing treatments
with a control in balanced one-way layouts can be applied in unbalanced layouts (unequal sample sizes for
the treatments). The method we describe has the advantage that it provides p-values, for each treatment
versus control comparison, that take account of the multiple step-down testing nature of the procedure.
These joint p-values can be used with any value of «, the fixed type I familywise error rate bound, that may be
specified by the investigator. To determine the p-values, it is necessary to compute a multivariate Student ¢
integral, for which a computer program is available. This procedure is more powerful than the step-down
Bonferroni procedure of Holm' and the single-step procedure of Dunnett.? An example from the
pharmaceutical literature is used to illustrate the procedure. ‘

1. INTRODUCTION

In many studies, comparisons between treatments and a specified treatment may be of interest for
the purpose of determining which treatments are different from the specified treatment and/or
estimating the differences from the specified treatment. For example, the specified treatment may
be a placebo control or an accepted standard therapy in a medical trial with which one or more
alternative therapies are compared. Another example is a drug trial where a new drug is
compared with one or more reference standard drugs.

The purpose of such studies is usually to estimate differences between the various treatments
and the specified treatment with respect to certain response variables which may be critical for
determining the efficacy or safety of the treatments. Sometimes tests of significance are performed
on the treatment versus control differences for a particular response variable to test whether they
exceed or differ from some specified threshold value (which may be zero or some ¢ # 0). If the
study contains more than one test treatment to be compared with the control, then the
experimenter may need to take account of the multiple testing being performed in order to
provide sufficiently convincing evidence that a particular observed dlﬂ'erence is indicative of a real
effect rather than being a result of the multiplicity.

0277—6715/91 /060939—09505.00
© 1991 by John Wiley & Sons, Ltd.



940 C. W. DUNNETT AND A. C. TAMHANE

The first to recognize the need for allowing for multiple testing when testing the significance of
differences between treatments and a control was Roessler.> He proposed that the customary
Student t-tests be performed at a level 1 — (1 — a)'/* instead of « when comparing k treatments
with a control; the implication was that this will control the probability of making any type I
error at approximately . This probability is the so-called familywise error rate, FWE, and we
refer to its nominal value, «, as the joint significance level., (Later it was shown* > that « was an
upper bound for the actual FWE.) Dunnett? developed an exact method for maintaining the
FWE at o based on the multivariate ¢-distribution. This method was formally described in terms
of one-sided or two-sided simultaneous confidence interval estimates of the k treatment versus
control differences, with specified joint confidence coefficient, I — a. Using this method each
individual difference could be tested at a joint significance level o by observing whether zero (or
any other specified value §) was included in the corresponding confidence interval.

However, if only a significance testing procedure was required, it was clear that the power of the
tests could be increased further by performing them in a step-down manner similar to the well-
known Newman-Keuls test for pairwise treatment comparisons. The first to point this out was
Miller® (see pp. 78 and 85-86). Naik’ proposed the same procedure in a different context. The
reason for the increase in power is that the successive tests use a decreasing sequence of critical
values based on m-variate Student t distributions with m =k, k—1,..., 1, these critical
values being less than the critical value required for the simultaneous confidence intervals except
when m = k. Marcus et al.® showed, using their closure principle, that this step-down testing-
method does, in fact, maintain the FWE at or below the desired level o’ Although they considered
a balanced one-way layout (that is, equal sample sizes for all the treatments), the procedure can be
readily extended and applied when the test treatments have a common sample size which is
different from that of the control, since the associated m-variate ¢ distributions are equicorrelated
and tables of critical points are available.” Marcus et al’s® proof applies also to completely
unbalanced one-way layouts, but the application of the procedure in this case is hampered by the -
difficulty of computing exact critical constants at each step of testing, since these critical constants
require the use of multivariate ¢-distributions with unequal correlations to compute their values.

A conservative solution to this difficulty is provided by the sequentially rejective Bonferroni
procedure of Holm.! This is a step-down testing procedure which uses the Bonferroni upper
bounds on the exact multivariate ¢ critical points, the Bonferroni bounds being based on the
univariate ¢ distribution. In the present paper we show how, by using a computer program by
Dunnett!® which calculates probability integrals of the multivariate normal distribution having a
so-called product correlation structure, the Bonferroni approximation can be dispensed with and
an exact application of the step-down test procedure in unbalanced one-way layouts becomes
possible. :

In fact, our method computes ‘joint’ p-valucs assoc1ated with the observed treatment versus
control mean differences, taking into account the multiple step-down testing nature of the
procedure. Here, as in the case of a single test (the p-value for which may be referred to as a
‘marginal’ p-value), the joint p-value for any observed difference is defined to be the smallest joint
level of significance « at which that difference would be declared statistically significant. (From
now on, we will drop the prefix oint’ when referring to p-values and « if there is no possibility of
ambiguity.) These p-values are more informative than merely stating whether the observed
difference is significant at specified level «. It should be noted that the concept of p-values has not
been used much in the multiple comparisons literature, a recent exception being  Westfall and
Young.!!
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The outline of the paper is as follows: Section 2 describes the step-down test procedure, both in
its classical version based on critical constants for specified a and in its p-value version as
proposed here. Two approximations to the classical version, both of which can be applied
. without access to a computer program, are also described; one is the Bonferroni approximation
due to Holm,! while the other is based on a close approximation to the required multivariate
Student’s ¢ critical points. Section 3 gives the details of the computation of the multivariate ¢
~ probability integral. Section 4 describes an illustrative example followed by discussion in
Section 5.

2, DESCRIPTION OF THE STEP-DOWN TESTING PROCEDURES

We use the subscripts 1, 2, . . ., k to denote k > 2 test treatments and the subscript 0 to denote
the control or otherwise specified treatment. Denote by n; the sample size for the ith treatment
(0 < i < k). We assume the standard one-way fixed effects model that is, normality with unknown
treatment means y; and common unknown error variance ¢2. Thus the sample means X; are
mutually independent N(y;, 62/n;) random variables distributed independently of the pooled
sample variance S2. The latter is a o ¥2/v random variable based on v = ) n; — (k + 1) degrees of
freedom (d.f.). I

Consider the problem of testing the hypotheses Hy;: i; — o < & against upper one-sided
alternatives Hy;: ; — pto > 6 (1 < i< k) where 9 is a specified constant Denote the observed
values of the X; and S? by the corresponding lower case letters X; and s, respectively (0 i< k)
The Student t-statlstlcs for testing the H,,; are given by

_ (%, — %o — 0)
s\/(I/n + 1/ng)

T = {Xi—fo —(ﬂi—ﬂo)}
! S/ (1/n; + 1/n,)

then 73,75, .. Tk have a joint k-variate central z-distribution with v d.f. and associated
correlation coefﬁcwnts given by p;; = 4;4; where 4, = 1/ \/ (1 + no/n;) (1 < i # j < k). The result-
ing correlation matrix, say R,, is said to possess a product correlation structure (Hochberg and
Tamhane,'? p. 365; see also Curnow and Dunnett!?). Let t&, p be the upper a point of the
maximum of Ty, ..., T,,, which have an m-variate t-distribution with v d.f. and associated
correlation matrix R, (m = 1, . . ., k). Note that R,, is the submatrix of R, formed by its first m
rows and m columns. '

We shall describe the step-down test procedure first in its classical version, based on critical
constants for a specified «. From now on we will assume that the treatments and the associated
hypotheses are relabelled so that ¢, <t, < ... <t,. (However, the random variables 7;’s are not
assumed to be ordered.) The step-down test procedure rejects Hy,,, iff Ho 4 1, - - - » Ho, have been
rejected and r,, > 19, » if H,,, is accepted then Hy,, ..., Hy, ,—, are accepted by implication
without actually testing them. It can be shown that this procedure controls the type I FWE at
level o (see Hochberg and Tamhane,'! pp. 54-56). It is also easy to see that the critical constants
1@, p. are monotonically increasing in m. Dunnett’s? single-step procedure uses the largest of
these critical constants, namely ¢{®, ;. for testing all the hypotheses (w1th0ut regard to their
order), and hence it is less powerful than its step-down counterpart

a<i<gk | (1)
If we let-

t<ish ")
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~ Next we describe the p—value version of this step-down procedure First, compute

P = P{at leastone T, > ¢, i=1,...,m}
«=1——P{T}<t,,,,i=l,...,m} T m=1,...,k). (3)
Then define the p-value:for H,, (denoted by p,) to be ' ! ‘
Pi  form=k .
= @4
Pm {max(p;,,,pmﬂ) form=1,...,k—1. @

An alternative way of writing (4) is p,, = max(Pl, Pt 15 - - - » Di)- _

Once these p-values are determined, hypothesis tests can be conducted at any fixed specified
level o, if desired, by comparing any p,, with « and rejecting Hy,, if p,, < a(m =1, ..., k). In other
situations it may be more useful to simply report the p-values and perhaps use them as inverse
measures of the strength of evidence in favour of the H,,,.. : S :

Note that the p-values are monotonically ordered, that is, p, = p, = ... = p,, whereas the

p’-values are not always so ordered. (This is in contrast to the critical constants t‘“’\, .R,, Which are
always ordered.) Thus if p,, > o and hence H,,, is accepted, then monotonicity ensures acceptance
alsoof Hyy, ..., Hy 4. Therefore the results of both versions of the step-down test procedure
will be in accord for whatever value is specified for o.

A computer program is needed to implement either version of this step-down procedure in the
next section we describe a computer program to implement the p-value version. If a user prefers
not to have to depend upon a computer program, then the classical (fixed o) version can still be
implemented by using available tables and making certain approximations. One approximation
is to replace the off-diagonal entries in the correlation matrix R,, by their arithmetic average.
Then the required critical constants can be approximated by the corresponding critical constants
from equicorrelated multivariate t-distributions, for which extensive tables have been given by
Bechhofer and Dunnett.® A numerical study of this approximation by Dunnett!4 (see also
Hochberg and Tamhane,!! p. 145), shows that it is generally more accurate than the approxima-
tion proposed by Dutt et al.}3 and also it is conservative. However, there is no analytlcal proof
that this approximation is always conservative. .

A more conservative approach but one that is easier to apply is to use the Bonfcrrom
approximation. This involves replacing the critical constants @, &, by ™, which can
be obtained from Bailey’s'® univariate Student ¢ tables constructed especially for using the
Bonferroni approximation. An equivalent way of applying this procedure as given by-Holm is as
follows: let p), = P{T,,l > t,}, which is the ‘marginal’ p-value of t,, if that were the only statistic
under test (m=1,...,k). Then mp], is the Bonferroni upper bound on p,,. Reject H,, iff
Hom+1s -, Hoare reJected and mpj, < o; if H,, is accepted then accept Hoy, . . . , Ho, - by
implication wrthout actually testing them. This procedure is of step-down type, Whlch is required
because the Bonferroni bounds mp;, are not necessarily ordered although the p), are ordered.
Slightly less conservative modifications of the Bonferroni approximations are given by Hochberg
and Tambhane,'! p. 148, and by Holland and Copenhaver.!” Both of these approximations
involve replacing all of the p,; by zeros.

The above discussion can be extended in an obvious way to the two sided testlng problem, that
is, Ho;: tty — o = 6 versus Hy;:u; — po # 6 (1 < i< k). In this case, the tests are based on the
absolute values of the Student t-statistics in (1), which are ordered and relabelled so that
[t < [t,] < ... <|t]. Thus, analogous to (3), we have

Po=1—P{—tl<Ti<|t,li=1...,m} (m=1,...,k (5)
and the p-values are defined as before by (4).
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3. COMPUTATION OF THE PROBABILITY INTEGRALS

In order to implement the step-down_proced‘ure defined in the previous section, it is necessary to
be able to compute the probabilities (3) or (5) depending on whether one-sided or two-sided tests’
are required. These probabilities are of the following general form:

C Play<Ti<byi=1,...,m} (m=1,...,k). o ~(6)

For the one-sided problem a; = — 0 and b; = t,,, while for the two-sided problem a; = — |t
and b; = |¢,,|, where the t,, are the values of the Student ¢-statistics for the treatment versus control
comparisons. calculated from the experimental data according to (1). (However, recall that -
the labelling is done differently for one-sided and two-sided testing problems.) If we write
=Z,/U (1 <i<k) where Z,, Z,,...,Z; are standard normal random variables with
‘ corr(Z,, Z;)=p;=4i; (4= 1/\/{1 + no/n,}) and U is distributed as a \/(xf/v) random
variable independent of the Z;, then (6) can be written (for a derivation, see Hochberg and
Tamhane ;12 Appendix 3) as :

Az +bu | bz + au ' -
jj-w, { [ V(=27 ,12)] ‘D[m]}dm(z)ﬁ(u)du (7

where @(*) is the standard normal CDF and f,(*) is the PDF of the \/ (x2/v) random variable. The
inner integral is a multivariate normal probability which can be evaluated using Dunnett’s!®
Fortran algorithm. The outer integral can be evaluated by numerical integration using this
algorithm as a subroutine. A copy of the program to evaluate the outer integral (7) can be
obtained from the authors. This program, which uses the numerical integration routine QDAGI
from the IMSL subroutine library, was used to compute the multivariate Student probabilities for
the example in the next section. (The average computing time when m = 5 and an accuracy of
10~* was specified was 52 seconds using a VAX 8600 computer.)

~

4. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the step-down procedure using an example from a recent investiga-
tion by Bedotto et al.'® This was a study in rats to elucidate the manner in which thyroid
hormone produced cardiac hypertrophy. There were three possible mechanisms for the action of
the hormone; the investigators judged that they could determine which was the correct one by
treating groups of animals with various combinations of the hormone and other compounds and
observing which ones altered the action of the hormone. There were ten treatment groups, the
active treatments being captopril, hydralazine (two reducing agents), propranolol (a beta
adrenoceptor), and a combination of captopril and propranolol, each given with and without T4
(thyroid hormone); in addition there was a group receiving T4 alone and an untreated control
group. The treatment combinations actually formed a 5 x 2 factorial design with unequal sample
sizes. However, the investigators analysed the data as two sets (or ‘famllles ) of treatments versus
specified treatment multiple comparisons:

-1. the group recexvmg T4 alone and each of the ‘without T4’ treatment groups were compared\
with the untreated controls; and
2. the various ‘with T4’ groups were compared with the T4 alone group.

Five cardiovascular variables were measured on each animal to assess the effects of the
treatments. , :

In Table I we show the sample sizes and treatment means for one of the response variables (left
ventricular weight/body weight measured in mg/g, denoted by LV/body weight) as given in
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‘Table I. Sample sizes, means, standard deviations and t-statistics for LV/body weight (in mg/g) data from
‘ “Bedotto et al 18

, Sample = t-statistics for differences
Sample Sample standard -

Treatment group size mean deviation  from controls  from T4
Control (untreated) 11 221 0137 = —
T4 10 252 0-175 4.57 —
Captopril 10 203 0-203 ' —~ 275 —
Propranolol 12 2:32 0-162 1-74 —
Hydralazine , 10 210 - 0-099 —1:62 —
Propranolol 4+ Captopril 9 204 0-155 —2:52 —
T4 + Captopril : 9 2:49 0-090 — — 036
T4 + Propranolol 12 2.60 0-152 . — . 132
T4 + Hydralazine 10 2-54 0-158 - 0-35
T4 + Propranolol + Captopril 10 2:56 0-167 — 0-55

Bedotto et al., 18 along with the standard deviations for the individual treatment groups which
were obtained directly from the mvestlgators

We first discuss the use of a pooled variance estimate as called for in the descnptlon of the
proposed procedure. This assumes that the different treatments in the experiment affect only the
mean values of response, and have no effect on the variances. If, in fact, the variances are also
different in the treatment groups, and if this is ignored and a pooled variance estimate is used, not
only will this result in a distortion of the values of the individual t-statistics but also the actual
error rate can be quite different from its nominal value. (For a discussion of some studies of the
effects of using a pooled variance estimate when the variances are heterogeneous on the error
rates of pairwise comparison procedures, see Chapter 7 of Hochberg and Tamhane.!?) Thus, it is
important to check the equal variances assumption. In the present example, we applied Bartlett’s
test which indicated that the sample variances were not significantly different from each other.
Therefore, we used a pooled variance estimate s2 = 0-02366 with 93 df to compute the Student
t-statistics shown in Table L.

- If the equal variances assumption is not justified, the experimental procedure should be

examined to determine whether any ‘assignable cause’ can be found other than the difference in
treatments, If this possibility is ruled out, one should try a suitable transformation of the data to
see whether the assumption can be met on the transformed scale. Failing this, one alternative
would be to apply the Holm® procedure, but with t-tests using a pooled variance estimate from
only the treatment-control pair under consideration, or approximate t-tests using separate
variance estimates. Another alternative would be to apply the approximate form of the present
test procedure using separate variance estimates as suggested by Dunnett.!4

Table II shows the computations of p-values for the first family of comparisons. For two-sided
tests, the t-statistics are ordered according to their magnitudes and assigned an index m according
to their rank orders. The A-values needed to compute the m-variate probabilities p,, depend on the
sample sizes and are calculated using the formula for 4, = 1/\/ (1 + ny/n,,). The p;.-values are
given by eqn. (5) and the values shown in Table II were computed using the program described in
Section 3. Finally, the p-values corresponding to each treatment were determined from the p’-
values as shown in eqn. (4). It may be noted that, in this example, only one of the p-values differs

from the corresponding p'-val_ue. o

~
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Table II. Computation of p-values for comparisons with untreated control

Index - - Ordered e
» m el Am MpPp Pm Pm
5 4-57 - 06901 0000 - - 0000 0-000
4 2475 0-6901 0029 0025 0-025
3 2:52 0-6708 0-040 - 0037 0-037
2 1-74 07223 o170 - 0151 0-151
1 1-62 0-6901 0-109 - 0-109 0-151

Table III. Comparison of exact and approximate fixed a = 0-05 critical values
for comparisons with untreated control

Upper 5% critical points

Index ‘ - - -

m P Exact p-approx.”  Bonferroni approx.
; 5 0-4797 2:562 2:563 - 2630

4 0-4806 2:489 2:489 , 2:547

3 0-4820 2:391 2:391 ©2:438

2 - 04984 - 2246 2:246 2:278

1 — 1-986 1-986 1-986

Next, we illustrate the application of the fixed-« step-down procedure, using & = 0-05 as an
example. Of course, if the p-values have already been computed as described above, it is only
necessary to observe which of them are less than or equal to the specified «, in this case those for
treatments 5, 4 and 3 (T4, captopril, and captopril + propranolol, respectively). The altcrnatlve
method is to determine critical values for each |t,,| for the chosen level a = 0-05.

Table IIT shows the exact critical values for each comparison, computed by evaluating the
multivariate probabilities, along with the p and Bonferroni approximations. To determine the p
approximation, we average the p’s determined by the A’s for each m. For example, for m = 5, there
are 10 correlation coefficients to be averaged, for m = 4, there are 6, and so on. These averages are
shown in Table III. Then the approximate critical values for each m were obtained from Table B.3
of Bechhofer and Dunnett® using the value of m for the parameter p in that table and interpolating
with respect to the value of p obtained for each m and with respect to v = 93 d.f. (Interpolation
was done linearly in 1/(1 — p) and 1/v for greatest accuracy.) To obtain the Bonferroni
approximations, the 0-05/m critical values of univariate Student’s ¢t are needed, which may be
most easily obtained from Bailey.’® Whichever method is used to obtain the critical values, it is
only necessary to compute them for m = 5, 4, etc. until a non-significant result is observed. In this
case, we could stop at m = 2 but, for illustrative purposes, we show the values obtained for all m.

It may be noted that the p approximation gives particularly accurate results compared with the
exact values in this example because the n’s do not differ much, making the p,;’s approximately
equal. The conclusion from the results shown in Tables II and III is that three of the five
treatments in the first family of comparisons (T4, captopril and captopril + propranolol) have
demonstrated significant effects on LV/body weight relative to the results. obtained for the
untreated animals. For the remaining two treatments (propranolol and hydralazme) the effects
were non-significant (which does not mean they were necessarily negligible, of course).
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Table IV. Computation of p-values and lower 95 per cent
simultaneous confidence limits for comparisons with T4

Index Ordered o Lower confidence
m |t A " Pm limit

4 1-32 0-7385 049 - =006

3 0-55 0-7071 090 . =011

2 036 - 06882 091 . =018

1 0-35 0-7071 091 —013

Computations similar to those shown in Tables II and III can be performed for the second
family of comparisons as well. In Table IV, we show the p-values obtained for this family. It is
clear that none of these treatment groups differs significantly from the T4 alone group for this
response variable, that is, Hy;: ¢ty — po = 0 cannot be rejected for i = 1, . . ., 4. It may be useful,
however, to determine how close to 0 the various y; — p, are estimated to lie. For this purpose, we
consider confidence limits for the y; — p,. Since the investigators were particularly interested in
looking for differences which would indicate a blocking of the action of T4, which for this variable
was to increase it, we show in Table IV the lower 95 per cent simultaneous confidence limits for
each p; — u, computed using Dunnett’s?. method. This lower confidence limit is given by

%y — %o — ), xS/ (Umy + 1/ng)

where ¢, . = 219 for « = 0-05, k = 4, v =93 and the R, matrix is given by the A’s shown in
Table IV. From these results we can state, with 95 per cent confidence, that none of the treatments
decreased the effect of T4 by more than 0-18 mg/g. It would also be possible to calculate p-values
to test for effects in excess of a specified level — 6, the value chosen for the latter being defined as
the minimum difference between treatment effects considered to be clinically significant. The
hypotheses tested would be formulated as Hy;: y; — po < — 0 against upper one-sided alter-
natives H,;: i; — po > — 9. The p-values could be calculated for each comparison as before, small
values indicating evidence supporting the conclusion of negligible effect (that is, equivalence of the
effects of T4 + drug and T4 alone; see Metzler!®). .

5. DISCUSSION

In this paper we have described a step-down procedure for comparing several treatments with a
specified treatment. This problem is a common one in biopharmaceutical and medical studies.
The step-down feature of the procedure is not new, as we have pointed out. What is new is the
application of the method to unbalanced data, which is made possible by the availability of the
computer algorithm described in Section 3. Previous papers by other authors have proposed
approximations such as the Bonferroni for use in unbalanced situations. However, with the use of
the alternative methods described in the paper, namely use of the computer program or the
approximate calculation using tables, exact or virtually exact results are made possible. With the
computer program, the method provides p-values, which are more useful than détermining
whether a particular significance level a is reached. , ‘
A limitation of the method is that it is for significance testing only. In apphcatlons where the
magnitudes of treatment differences are important, either to show how large these might be or to -
demonstrate that they cannot be larger than some specified amount, simultaneous confidence
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" intervals will be more appropriate. For simultaneous confidence interval estimates of diﬂ'erences
between treatments and a specified treatment, see Dunnett?> and Hochberg and Tamhane!?
(pp. 140-141), and note that the same methods we have described here can be applied in that
context for unbalanced data.

ACKNOWLEDGEMENTS

C. W. Dunnett’s research was supported by a grant from the Natural Sciences and Engineering
Research Council of Canada at McMaster University. The authors are indebted to Dr. Richard
Gay for providing additional data from the study reported in Bedotto et al.,'® which enabled us
to calculate the statistics presented in Section 4 with greater precision.

REFERENCES

1. Holm, S. ‘A simple sequentially rejective multiple test procedure,” Scandinavian Journal of Statistics, 6,
65-70 (1979).
2. Dunnett, C.-W. ‘A multiple comparison procedure for comparing several treatments with a control’,
Journdl of the American Statistical Association, 50, 1096-1121 (1955).
3. Roessler, E. B. ‘Testing the significance of observations compared with a control’, Proceedings of the
American Society for Horticultural Science, 47, 249-251 (1946). .
4. Slepian, D. ‘The one-sided barrier problem for Gaussian noise’, Bell System Technical Journal, 41,
463-501 (1962). '
5. Sidak, Z. ‘Rectangular confidence regions for the means of multivariate normal d:strlbutlons Journal of
the American Statistical Association, 62, 626-633 (1967).
6. Miller, R. G,, Jr. Simuitaneous Statistical Inference, McGraw Hill, New York, 1966.
7. Naik, U. D. ‘Some selection rules for comparing p processes with a standard’, Commumcatzons in
Statistics — A. Theory and Methods, 4, 519-535 (1975).
8. Marcus, R, Peritz, E. and Gabriel, K. R. ‘On closed testing procedures with special reference to ordered
analysis of variance’,.Biometrika, 63, 655-660 (1976). :
9. Bechhofer, R. E. and Dunnett, C. W. ‘Percentage points of multivariate Student ¢ distributions’, Selected
Tables in Mathematical Statistics, 11, Providence: American Mathematical Society (1988).
10. Dunnett, C.- W. ‘Multivariate normal probability integrals with product correlation structure,
Algorithm AS 251°, Applied Statistics, 38, 564-579 (1989).
11. Westfall, P. H. and Young, S. ‘P value adjustments for multiple tests in multivariate binomial models’,
. Journal of the American Statistical Association, 84, 780-786 (1989).
12. Hochberg, Y. and Tamhane, A. C. Multiple Comparison Procedures, Wiley, New York, 1987.
13. Curnow, R. N. and Dunnett, C. W. ‘The numerical evaluation of certain multivariate normal integrals’,
Annals of Mathematical Statistics, 33, 571-579 (1962).
‘14, Dunnett, C. W. ‘Multiple comparisons between several treatments and a spectfied treatment’, Invited
talk at the Spring ENAR Meeting, Raleigh, NC, 1985.
15. Dutt, I. E.,, Mattes, K. D., Soms, A. P. and Tao, L. C. ‘An approximation to the trivariate ¢t with a
comparison to the exact values’, Biometrics, 41, 153-169 (1976).
16. Bailey, B. J. R. ‘Tables of the Bonferroni ¢ statistic’, Journal of the American Statistical Association, 72,
469478 (1977).
17. Holland, B. S. and Copenhaver, M. D. ‘An improved sequentially rejective Bonferroni test procedure’,
 Biometrics, 43, 417-424 (1987).
18. Bedotto, J. E,, Gay, R. G., Graham, §. D., Morkin, E. and Goldman, S. ‘Cardiac hypertrophy induced by
thyroid hormone is mdependent of loadmg conditions and beta adrenoceptor’, Journal of Pharmacology
and Experimental Therapeuttcs 248, 632-636 (1989).
19. Metzler, C. M. ‘Sample sizes for bioequivalence studies’, Statistics in Medicine, 10, 961-970 (1991).



